Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
J Neuroimmunol ; 389: 578313, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401393

RESUMO

The clinical effect of human Mesenchymal stem cells (hMSCs) transplanted into EAE mice/MS patients is short lived due to poor survival of the transplanted cells. Since Granagard, a nanoformulation of pomegranate seed oil, extended the presence of Neuronal Stem cells transplanted into CJD mice brains, we tested whether this safe food supplement can also elongate the survival of hMSCs transplanted into EAE mice. Indeed, pathological studies 60 days post transplantation identified human cells only in brains of Granagard treated mice, concomitant with increased clinical activity. We conclude that Granagard may prolong the activity of stem cell transplantation in neurological diseases.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Esclerose Múltipla , Humanos , Animais , Camundongos , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Encéfalo/patologia , Transplante de Células-Tronco , Fatores Imunológicos , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia
2.
Cytotherapy ; 26(3): 276-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231166

RESUMO

BACKGROUND AIMS: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.


Assuntos
Encefalomielite Autoimune Experimental , Vesículas Extracelulares , Células-Tronco Mesenquimais , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia , Linfonodos , Camundongos Endogâmicos C57BL
3.
Cell Commun Signal ; 21(1): 321, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946301

RESUMO

Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Esclerose Múltipla/tratamento farmacológico , Encefalomielite Autoimune Experimental/terapia , Linfócitos T , Imunoterapia , Autoimunidade
4.
Mol Biol Rep ; 50(12): 9971-9984, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897611

RESUMO

INTRODUCTION: Clinical and experimental studies highlighted the significant therapeutic role of Mesenchymal stem cells (MSCs) in neurodegenerative diseases. MSCs possess potent immunomodulatory properties by releasing exosomes, which generate a suitable microenvironment. microRNAs (miRNAs), as one of several effective bioactive molecules of exosomes, influence cellular communication and activities in recipient cells. Recent studies revealed that miRNAs could control the progression of multiple sclerosis (MS) via differentiation and function of T helper cells (Th). METHODS: Here, we investigated the therapeutic effects of syngeneic-derived BM-MSC in experimental autoimmune encephalomyelitis (EAE) mouse model of MS by evaluating expression profile of miRNAs, pro- and anti-inflammatory in serum and brain tissues. Three-time scheme groups (6th day, 6th & 12th days, and 12th day, of post-EAE induction) were applied to determine the therapeutic effects of intraperitoneally received 1*106 of BM-MSCs. RESULTS: The expression levels of mature isoforms of miR-193, miR-146a, miR-155, miR-21, and miR-326 showed that BM-MSCs treatment attenuated the EAE clinical score and reduced clinical inflammation as well as demyelination. The improved neurological functional outcome associated with enhanced expression of miR-193 and miR-146a, but decreased expression levels of miR-155, miR-21, and miR-326 were followed by suppressing effects on Th1/Th17 immune responses (reduced levels of IFN-γand IL-17 cytokine expression) and induction of Treg cells, immunoregulatory responses (increase of IL-10, TGF-ß, and IL-4) in treatment groups. CONCLUSION: Our findings suggest that BM-MSCs administration might change expression patterns of miRNAs and downstream interactions followed by immune system modulation. However, there is a need to carry out future human clinical trials and complementary experiments.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , MicroRNAs , Esclerose Múltipla , Animais , Camundongos , Humanos , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/terapia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Células da Medula Óssea
5.
Nat Biomed Eng ; 7(9): 1142-1155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679570

RESUMO

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Tolerância Imunológica , Animais , Camundongos , Autoimunidade , Glicosilação , Acetilgalactosamina , Encefalomielite Autoimune Experimental/terapia
6.
Glia ; 71(8): 2045-2066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37132422

RESUMO

Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Remielinização , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Anaerobiose , Oxigênio , Feminino
7.
Sci Transl Med ; 15(698): eade3856, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256935

RESUMO

Dysregulation of the interleukin-1 (IL-1) pathway leads to immune diseases that can result in chronic tissue and organ inflammation. Although IL-1 blockade has shown promise in ameliorating these symptoms and improving patients' quality of life, there is an urgent need for more effective, long-lasting treatments. We developed a lentivirus (LV)-mediated gene transfer strategy using transplanted autologous hematopoietic stem/progenitor cells (HSPCs) as a source of IL-1 receptor antagonist (IL-1RA) for systemic delivery to tissues and organs. Transplantation of mouse and human HSPCs transduced with an IL-1RA-encoding LV ensured stable IL-1RA production while maintaining the clonogenic and differentiation capacities of HSPCs in vivo. We examined the efficacy of cell-mediated IL-1RA delivery in three models of IL-1-dependent inflammation, for which treatment hindered neutrophil recruitment in an inducible model of gout, prevented systemic and multi-tissue inflammation in a genetic model of cryopyrin-associated periodic syndromes, and reduced disease severity in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Our findings demonstrate HSPC-mediated IL-1RA delivery as a potential therapeutic modality that can be exploited to suppress tissue and organ inflammation in diverse immune-related diseases involving IL-1-driven inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Proteína Antagonista do Receptor de Interleucina 1 , Animais , Humanos , Encefalomielite Autoimune Experimental/terapia , Inflamação/terapia , Interleucina-1 , Lentivirus , Qualidade de Vida , Camundongos
8.
J Pept Sci ; 29(10): e3493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37041122

RESUMO

Analogs of immunodominant myelin peptides involved in multiple sclerosis (MS: the most common autoimmune disease) have been extensively used to modify the immune response over the progression of the disease. The immunodominant 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG35-55 ) is an autoantigen appearing in MS and stimulates the encephalitogenic T cells, whereas mannan polysaccharide (Saccharomyces cerevisiae) is a carrier toward the mannose receptor of dendritic cells and macrophages. The conjugate of mannan-MOG35-55 has been extensively studied for the inhibition of chronic experimental autoimmune encephalomyelitis (EAE: an animal model of MS) by inducing antigen-specific immune tolerance against the clinical symptoms of EAE in mice. Moreover, it presents a promising approach for the immunotherapy of MS under clinical investigation. In this study, a competitive enzyme-linked immunosorbent assay (ELISA) was developed to detect the MOG35-55 peptide that is conjugated to mannan. Intra- and inter-day assay experiments proved that the proposed ELISA methodology is accurate and reliable and could be used in the following applications: (i) to identify the peptide (antigen) while it is conjugated to mannan and (ii) to adequately address the alterations that the MOG35-55 peptide may undergo when it is bound to mannan during production and stability studies.


Assuntos
Epitopos Imunodominantes , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Animais , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Ensaio de Imunoadsorção Enzimática , Epitopos Imunodominantes/análise , Mananas/química , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/análise , Fragmentos de Peptídeos/análise , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia
9.
Exp Neurol ; 363: 114374, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907352

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and is marked by inflammation and damage to the myelin sheath surrounding nerve fibers. Recent studies have highlighted the therapeutic value of exosomes (Exos) obtained from bone marrow mesenchymal stem cells (BMSCs) in MS treatment. These BMSC-Exos contain biologically active molecules that show promising results in preclinical evaluations. The aim of this study was to investigate the mechanism of BMSC-Exos containing miR-23b-3p in both LPS-stimulated BV2 microglia and in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Exos were isolated from BMSCs, and their effects were evaluated in vitro by co-culturing with BV2 microglia. The interaction between miR-23b-3p and its downstream targets was also explored. The efficacy of BMSC-Exos was further verified in vivo by injecting the Exos into EAE mice. The results showed that BMSC-Exos containing miR-23b-3p reduced microglial pyroptosis in vivo by specifically binding to and suppressing the expression of NEK7. In vivo, BMSC-Exos containing miR-23b-3p alleviated the severity of EAE by decreasing microglial inflammation and pyroptosis via the repression of NEK7. These findings provide new insights into the therapeutic potential of BMSC-Exos containing miR-23b-3p for MS.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , MicroRNAs , Esclerose Múltipla , Camundongos , Animais , Microglia/metabolismo , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/metabolismo , Piroptose , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Esclerose Múltipla/terapia , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Arch Immunol Ther Exp (Warsz) ; 71(1): 10, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964399

RESUMO

Microglia are the resident immune cells of the central nervous system, playing a role in the inflammatory process development and resolution, presenting two main phenotypes, pro-inflammatory M1, and anti-inflammatory M2. Therapies affecting the microglia phenotype may be beneficial in treating inflammatory neurodegenerative diseases. In our experiments, we used the animal multiple sclerosis model, experimental allergic encephalomyelitis (EAE). Rats were treated during the pre- or symptomatic phase of the disease with cyclophosphamide, followed by hematopoietic stem cell transplantation, and with/without post-transplantation cyclophosphamide. Our study aimed to analyze the microglia phenotype in animals subjected to this treatment. The number of M1 cells in the spinal cord, and inducible nitric oxide synthase (iNOS) levels in the brain were similar in all experimental groups. The differences were observed in M2 cells number and arginase 1 (Arg1) levels, which were decreased in EAE animals, and increased after treatment in the symptomatic phase of EAE, and in the pre-symptomatic phase, but only with post-transplantation cyclophosphamide. Analysis of gene expression in the brain showed decreased iNOS expression in EAE animals treated in the symptomatic phase of EAE and no differences in Arg1 expression. Results indicate that treatment applied to experimental animals influences the microglia phenotype, promoting differentiation towards M2 cells.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Hematopoéticas , Ratos , Animais , Camundongos , Encefalomielite Autoimune Experimental/terapia , Microglia/metabolismo , Fenótipo , Ciclofosfamida/uso terapêutico , Camundongos Endogâmicos C57BL
11.
Drug Res (Stuttg) ; 73(4): 213-223, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754055

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) modulate immune responses, and their immunomodulatory potential can be enhanced using inflammatory cytokines. Here, the modulatory effects of IFN-γ-licensed MSCs on expression of T cell-related chemokines and chemokine receptors were evaluated using an experimental autoimmune encephalomyelitis (EAE) model. MATERIAL AND METHODS: EAE was induced in 3 groups of C57bl/6 mice and then treated with PBS, MSCs and IFN-γ-treated MSCs. The EAE manifestations were registered daily and finally, the brain and spinal cords were isolated for histopathological and gene expression studies. RESULTS: The clinical scores were lowered in MSCs and IFN-γ-licensed MSCs groups, however, mice treated with IFN-γ-licensed MSCs exhibited lower clinical scores than MSCs-treated mice. Leukocyte infiltration into the brain was reduced after treatment with MSCs or IFN-γ-licensed MSCs compared to untreated group (P<0.05 and P<0.01, respectively). In comparison with untreated EAE mice, treatment with MSCs reduced CCL20 expression (P<0.001) and decreased CXCR3 and CCR6 expression (P<0.02 and P<0.04, respectively). In comparison with untreated EAE mice, treatment with IFN-γ-licensed MSCs reduced CXCL10, CCL17 and CCL20 expression (P<0.05, P<0.05, and P<0.001, respectively) as well as decreased CXCR3 and CCR6 expression (P<0.002 and P<0.02, respectively), whilst promoting expression of CCL22 and its receptor CCR4 (P<0.0001 and P<0.02, respectively). In comparison with MSC-treated group, mice treated with IFN-γ-licensed MSCs exhibited lower CXCL10 and CCR6 expression (P<0.002 and P<0.01, respectively), whereas greater expression of CCL22 and CCR4 (P<0.0001 and P<0.01, respectively). CONCLUSION: Priming the MSC with IFN-γ can be an efficient approach to enhance the immunomodulatory potential of MSCs.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , Animais , Camundongos , Encefalomielite Autoimune Experimental/terapia , Interferon gama , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/uso terapêutico , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linfócitos T , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL
12.
Fundam Clin Pharmacol ; 37(2): 215-225, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36300567

RESUMO

Macrophage M2 (MP2)-based cell therapy is a novel medicinal treatment for animals with Experimental Autoimmune Encephalomyelitis (EAE) as an experimental model of multiple sclerosis (MS). This systematic review and meta-analysis study was designed to assess the overall therapeutic effects of MP2 cell therapy on Clinical Score and motor impairment in EAE-induced animals. All experiments on MP2 cell therapy in animals with EAE were gathered (by October 2, 2022) from English (PubMed, Scopus, WoS, Science Direct, and ISC) and Persian (MagIran and SID) databases. The searching strategy was designed using "Experimental Autoimmune Encephalomyelitis," "Multiple Sclerosis," and "Macrophage M2" keywords. Following primary and secondary screenings, eligible papers were selected based on the PRISMA 2020 guideline, and the study quality was assessed using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) checklist. The difference in means of Clinical Score (score 0-5) as the effect size (ES) was analyzed based on the random effect model (CMA software, v.2). Subgrouping (EAE phases of Onset, Peak, and Recovery) was applied, and I2 index was used to assess the heterogeneity index. Publication bias and sensitivity indices were also evaluated. P < 0.05 was considered significant, and the confidence interval (CI) was determined 95%. Among 22 gathered papers, medium to high quality studies were selected for meta-analysis. Difference in means, P value, and I2 for Onset, Peak, and Recovery phases were 0.082 (CI95%: -0.323-0.159, P value: 0.504, I2 : 67.961%), -0.606 (CI95%: -1.518 to -0.305, P value: 0.192, I2 : 96.070%), and -1.103 (CI95%: -1.390 to -0.816, P value: 0.000, I2 : 30.880%), respectively and Overall Effect was found -0.509 (CI95%: -0.689 to -0.328, P value < 0.001). Also, P value (two-tailed) indices for publication bias were 0.366 and 0.583 for Egger's regression intercept and Begg rank correlation, respectively. The P value for sensitivity was detected 0.003. Cell therapy procedure using MP2 can potentially alleviate the Clinical Scores Index and correct the motor defects in Recovery phase of EAE animals. In healthy mice, the brain and myelin surrounding neurons are in a healthy and physiological state (1). To evaluate MS in humans, it is necessary to model this type of disease in animals using EAE procedure through subcutaneous injection of CFA, MOG35-55 , MT, and Pert. Thus, inflammation and autoimmunity occur, which finally lead to myelin destruction and motor symptoms (2). By aspiration of progenitor cells available in bone marrow, the MP2 can be isolated and cultured. By activation of these types of cells, a rich collection of MP2 can be prepared for the cell-therapy process (3). After injection through the tail vein or intra-peritoneal procedure, these cells can be located in CNS through crossing from the BBB. They begin their anti-inflammatory activities and help repair the damaged myelin (4). Eventually, the clinical symptoms can be modified considerably, and the animal motor function improves (5). CFA, complete Freund's adjuvant; MOG35-55 , myelin oligodendrocyte glycoprotein; MT, Mycobacterium tuberculosis; Pert, pertussis; EAE, Experimental Autoimmune Encephalomyelitis; BM, bone marrow; MP2, macrophage M2; and BBB, blood brain barrier.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/terapia , Glicoproteína Mielina-Oligodendrócito/efeitos adversos , Anti-Inflamatórios , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/efeitos adversos
13.
Nat Commun ; 13(1): 7449, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460677

RESUMO

Current therapies for autoimmune diseases, such as multiple sclerosis (MS), induce broad suppression of the immune system, potentially promoting opportunistic infections. Here, we report an immunosuppressive biomaterial-based therapeutic vaccine carrying self-antigen and tolerance-inducing inorganic nanoparticles to treat experimental autoimmune encephalomyelitis (EAE), a mouse model mimicking human MS. Immunization with self-antigen-loaded mesoporous nanoparticles generates Foxp3+ regulatory T-cells in spleen and systemic immune tolerance in EAE mice, reducing central nervous system-infiltrating antigen-presenting cells (APCs) and autoreactive CD4+ T-cells. Introducing reactive oxygen species (ROS)-scavenging cerium oxide nanoparticles (CeNP) to self-antigen-loaded nanovaccine additionally suppresses activation of APCs and enhances antigen-specific immune tolerance, inducing recovery in mice from complete paralysis at the late, chronic stage of EAE, which shows similarity to chronic human MS. This study clearly shows that the ROS-scavenging capability of catalytic inorganic nanoparticles could be utilized to enhance tolerogenic features in APCs, leading to antigen-specific immune tolerance, which could be exploited in treating MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Vacinas , Humanos , Camundongos , Animais , Esclerose Múltipla/terapia , Materiais Biocompatíveis , Espécies Reativas de Oxigênio , Tolerância Imunológica , Imunossupressores , Encefalomielite Autoimune Experimental/terapia , Autoantígenos
14.
J Control Release ; 352: 994-1008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370877

RESUMO

Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-ß delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-ß production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Esclerose Múltipla/terapia , Encefalomielite Autoimune Experimental/terapia , Interferon beta/genética , Interferon beta/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL
15.
Sci Rep ; 12(1): 17835, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284106

RESUMO

Multiple Sclerosis (MS) is the most common demyelinating disease with inflammatory demyelination in the central nerve system. Besides the defect in the myelin repair process, the balance change in inflammatory and anti- inflammatory cytokines is one of the most significant factors in MS pathogenesis. This study aimed at evaluating the effects of co-overexpressing beta interferon (IFN-ß) and Leukemia inhibitory factor (LIF) in human adipose-derived stem cells (IFN-ß/LIF-hADSCs) on the experimental autoimmune encephalomyelitis (EAE). 12 days after the induction of EAE on female mice C57Bl/6 with MOG35-55 and the emergence of primary clinical signs, the IFN-ß/LIF-hADSCs were injected into the mice tail vein of the EAE mice. The mice were sacrificed after 32 days and the spinal cords of the experimental groups were dissected out for the histopathologic and real-time RT-PCR studies. Here, we showed that the clinical scores and infiltration of mononuclear cells of treated mice with IFN-ß/LIF-hADSCs were decreased significantly. Demyelination and the number of Olig2+ and MBP+ cells were significantly increased in the test (IFN-ß/LIF-hADSCs) group. The findings revealed that the pattern of inflammatory and anti- inflammatory cytokines gene expression in the IFN-ß/LIF-hADSCs group was reversed compared to the control group. Overexpression of LIF as a neurotrophic and IFN-ß as an anti-inflammatory cytokine in hADSCs increases the immunomodulatory effect of hADSCs reduces the extent of demyelination, improves the number of Olig2+ cells, and also increases the amount of MBP protein which can increase the production of myelin in EAE model. This, besides hADSCs capacity for proliferation and differentiation, might enhance the treatment efficacy and provide a promising candidate for stem cell-based gene therapy of MS therapy in the future.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Feminino , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/terapia , Fator Inibidor de Leucemia/metabolismo , Interferon beta/metabolismo , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
16.
Ann Clin Transl Neurol ; 9(11): 1792-1806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217574

RESUMO

BACKGROUND: The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood. OBJECTIVES: To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties. METHODS: Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running. The proteolipid protein (PLP) transfer EAE model was utilized to examine the immunomodulatory effects of training, where PLP-reactive lymph-node cells (LNCs) from HICT and sedentary donor mice were analyzed in vitro and transferred to naïve recipients that developed EAE. To examine neuroprotection, encephalitogenic LNCs from donor mice were transferred into HICT or sedentary recipient mice and the BBB was analyzed. RESULTS: Transfer of PLP-reactive LNCs obtained from HICT donor mice attenuated EAE severity and inflammation in recipient mice. HICT markedly inhibited very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 expression in LNCs. Transfer of encephalitogenic LNCs into HICT recipients resulted in milder EAE and attenuated CNS inflammation. HICT reduced BBB permeability and the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in CNS blood vessels. INTERPRETATION: HICT attenuates EAE development by both immunomodulatory and neuroprotective effects. The reduction in destructive CNS inflammation in EAE is attributed to systemic inhibition of autoreactive cell migratory potential, as well as reduction in BBB permeability, which are associated with reduced VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions.


Assuntos
Encefalite , Encefalomielite Autoimune Experimental , Encefalomielite , Animais , Camundongos , Encefalomielite Autoimune Experimental/terapia , Encéfalo/metabolismo , Barreira Hematoencefálica , Encefalite/metabolismo , Inflamação/metabolismo
17.
Front Immunol ; 13: 970508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177043

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Citocinas/farmacologia , Células Dendríticas , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/terapia , Linfócitos T Reguladores
18.
STAR Protoc ; 3(3): 101653, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36065293

RESUMO

By their capacity to induce peripheral T cell tolerance, dendritic cells (DCs) present a promising target cell and therapeutic strategy for treatment of several autoimmune diseases including multiple sclerosis (MS). This protocol describes how to determine the tolerogenic capacities of DCs in the context of the murine MS model, experimental autoimmune encephalomyelitis (EAE). We provide a step-by-step instruction for EAE induction, antigen-loaded bone-marrow-derived-DC (BM-DC) generation, adoptive cell transfer, and analysis of DC-mediated changes in regulatory T cell populations. For complete details on the use and execution of this protocol, please refer to Vogel et al. (2022).


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Transferência Adotiva , Animais , Antígenos , Células Dendríticas , Encefalomielite Autoimune Experimental/terapia , Camundongos , Linfócitos T Reguladores
19.
Int J Med Sci ; 19(8): 1265-1274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928722

RESUMO

Objective: To investigate the efficiency and potential mechanisms of exosomes from dendritic cells (DCs) transfected with Forkhead box protein P3 (FOXP3) in the development of experimental autoimmune encephalomyelitis (EAE). Method: Mouse bone marrow-derived immature DCs were loaded with adenovirus carrying FOXP3 gene, and exosomes were generated. Then the exosomes with FOXP3 (FOXP3-EXOs) were co-cultured with CD4+T cell in vitro to evaluate their potential on CD4+T cell proliferation and differentiation, and injected into EAE mice to assess their effects on the development of EAE. Result: FOXP3-EXOs were effective to inhibit the CD4+T cell proliferation and the production of Interferon gamma (IFN-γ), interleukin (IL)-6, and IL-17, while they promoted the production of IL-10 in vitro. Moreover, FOXP3-EXOs treatment significantly decreased the neurological scores, reduced the infiltration of inflammatory cells into the spinal cord, and decreased demyelination in comparison to saline and Con-EXOs treated EAE mice. Moreover, the FOXP3-EXOs treatment resulted in obvious increases in the levels of regulatory T (Treg) cells and IL-10, whereas levels of T helper 1 (Th1) cells, Th17 cells, IFN-γ, IL-6, and IL-17 decreased significantly in the splenocyte culture of EAE mice. Conclusion: The present study preliminarily investigated the effects and potential mechanisms of FOXP3-EXOs in EAE and revealed that the FOXP3-EXOs could inhibit the production of Th1 and Th17 cells and promote the production of Treg cells as well as ameliorate the development of EAE. The neuroprotective effects of FOXP3-EXOs on EAE are likely due to the regulation of Th/Treg balance.


Assuntos
Células Dendríticas , Encefalomielite Autoimune Experimental , Exossomos , Fatores de Transcrição Forkhead , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Exossomos/genética , Exossomos/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores , Células Th17
20.
Ultrastruct Pathol ; 46(5): 401-412, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994513

RESUMO

In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.


Assuntos
Encefalomielite Autoimune Experimental , Fosfatase Ácida , Animais , Desmina , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Ratos , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...